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Abstract

The Poisson equation subject to Dirichlet boundary conditions on an irregular domain can be treated by embedding

the region in a rectangular domain and solving using finite differences over the rectangle. The crucial issue is the dis-

cretization of the boundaries of the irregular domain. In the past, both linear and quadratic boundary treatments have

been used and error bounds have been derived in both cases, showing that the linear case gives uniform second-order

accuracy, whereas the quadratic case gives third-order accuracy at the boundaries and second-order accuracy internally.

Thus, it has been recommended that the linear boundary treatment be used, as it is simpler, gives rise to a symmetric

matrix formulation and has uniform accuracy. The present work shows that this argument is inadequate, because the

coefficients of the error terms also play an important role. We demonstrate this in the 1-D case by determining explicit

expressions for the error for both the linear and quadratic boundary treatments. It is shown that for the linear case the

coefficient of error is in general large enough to dominate the calculation and that therefore it is necessary to use a quad-

ratic boundary treatment in order to obtain errors comparable with those obtained for a regular domain. We go on to

show that the 1-D expressions for error can be used to approximate the boundary error for 2-D problems, and that for

the linear treatment, the boundary error again dominates.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the solution of the Poisson equation on an irregular 2-D domain, subject to

Dirichlet boundary conditions. The approach used here goes back to the early works of Collatz [3] and of
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Shortley and Weller [21], in that the region of interest is embedded in a rectangular domain and the bound-

ary interpolation schemes used in the two coordinate directions are independent. At internal grid points the

Poisson equation is discretized with the standard second-order accurate five-point finite difference discreti-

zation, but special treatment is required at the edges. This gives rise to a pentadiagonal matrix system. In

[3], a first-order approximation is used for the estimation of derivatives at the boundary in both the x- and
y-directions. For the constant coefficient Poisson equation discussed here, this scheme is equivalent to that

used in [7]. However, the work of [7] can also be viewed as a development of that of [11], where the authors

describe a first-order accurate symmetric discretization of the variable-coefficient Poisson equation in the

presence of an irregular interface across which the variable coefficient, the solution and the derivative of

the solution may have jumps.

We note that there are many other approaches to this problem in the literature. The immersed boundary

method [20] uses a d-function on the domain boundary to enforce a no flow boundary condition; see [19] for

details. A related approach called the immersed interface method is a second-order numerical method de-
signed to preserve the jump condition at the interface [10]. An alternative approach, using boundary inte-

gral techniques, has been explored in a sequence of papers [14–17].

The approach of [3,7] leads to a method that is uniformly second-order accurate, and in addition

gives rise to a symmetric matrix for the representation of the second derivative operator, as only the

diagonal entries are modified when the boundary points are taken into account. Similarly [8] uses a

linear fit at the boundary but for more general orthogonal meshes. In [7], there is an explicit formula

for the quadratic boundary treatment of the 1-D case that is the same as that used in the present work,

but it is not discussed further there because a non-symmetric matrix is involved. (This quadratic for-
mulation in fact goes back to [21] and is also mentioned in [4].) This would appear to be the end

of the story, but as shown here, using the linear method the coefficient of error at the boundaries is

significantly greater than at internal grid points, so that the boundary error dominates the calculation.

One is thus led to a higher-order discretization at the boundaries, as in [9], who used a local area fit to

obtain the appropriate second-order accurate treatment of derivatives at the boundary (i.e., using a

quadratic fit). However, we employ the simpler technique of applying the boundary treatment over x

and y separately as in the original quadratic scheme of [21]. In practice, the Shortley–Weller approach

gives the same order error as in [9], but with a somewhat smaller coefficient of error, with the added
advantage that the method (in principle) extends immediately to three dimensions, as mentioned in [21].

We note here that [22] also use quadratic fitting at the boundaries in their treatment of moving inter-

face problems, but their method is closer to that of [9].

There is an extensive body of work giving bounds for the error involved in either the Collatz (linear) or

Shortley–Weller (quadratic) boundary fitting techniques. In the first work on this problem Gerschgorin [6]

used a constant fit, setting the solution value at interior grid points next to the boundary equal to the value

of the nearest boundary point. Also, error bounds for difference approximations of elliptic problems were

first derived by him in this same paper. Using a discrete analogue of the maximum principle for Laplace�s
equation, he shows that his method has errors of O(h), where h is the grid spacing. In 1933, Collatz [3] im-

proved Gerschgorin�s approximation by using a linear fit along the boundary. His paper uses Gerschgorin

estimation to show that the new method is O(h2). The estimates of [6,3] assume the knowledge of bounds

for certain higher derivatives of the solution of the Dirichlet problem. In [21], it is shown that use of a quad-

ratic fit at the boundary gives errors of O(h2), with the internal error O(h2) and the boundary error O(h3), so

that the internal error dominates. All these cases were confirmed in [23], while in [2] similar results were

obtained using Green�s third identity. More generally, in [18] it is shown that a method that uses a polyno-

mial of degree less than or equal to 6 to perform the fit along the boundary gives O(h2) convergence, again
because of the internal error. A useful short historical review of this early work is given in [1]. More re-

cently, the Shortley and Weller approximation was revisited in [13,5], these authors concentrating on the

O(h3) accuracy near the boundary previously noted by others.
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These asymptotic results can be understood in elementary terms. If we consider first the truncation error

at the boundary for the Shortley–Weller case where a quadratic fit is used for local slopes (first derivatives),

we expect that second derivatives are only accurate to first order. However, integrating twice produces a

local third-order error at the boundary, as was noted in [2]. Similarly, as internal second derivatives are

locally second-order accurate we initially expect fourth-order accuracy, after integrating twice. However,
as will be shown explicitly for the 1-D version of the problem, the sum of N2 such terms returns internal

second-order accuracy, in agreement with the asymptotic results discussed above. Thus, we apparently have

a scheme of inconsistent order, with cubic accuracy at the boundaries and quadratic accuracy internally,

whereas for the linear Collatz case, the error is uniformly O(h2). In the absence of explicit coefficients

for the error terms, it is not possible to decide whether the linear or quadratic method is preferable. In par-

ticular, many authors suggest use of the Collatz (linear) technique on the basis that it is more efficient and

gives the same order of error as the quadratic Shortley–Weller approach. However, if one uses the Collatz

linear approximation for derivatives at the boundary, then boundary error dominates the results, both for
1-D and 2-D examples. In practice, this means that in 1-D the linear boundary treatment may need as many

as three times as many grid points as the quadratic boundary treatment for the same maximum absolute

error. This result scales with the dimensionality of the problem, so that in 2-D as many as 10 times as many

grid points may be required using the linear treatment at the boundary. The downside of the quadratic

treatment of boundary points is that the symmetric matrix representation of the second derivative operator

is lost, with boundary corrections appearing in all five diagonals of the matrix.

In the remainder of this paper, we describe the algorithm, provide analysis of the error involved and give

some numerical examples. In particular, we first describe the discretization in 1-D and give exact explicit
expressions for the coefficients of error in the linear Collatz and quadratic Shortley–Weller methods, con-

firming and extending the known general results, using techniques based on those of [9], but extending these

to treat both the linear and quadratic cases and clearly demonstrating the source of the various error terms.

In addition, we explicitly allow for general values of aL and aR, whereas aL = aR = 1/2 in [9]. We then dis-

cuss the 2-D algorithm and finally, we show how the 1-D error analysis for the linear case gives an approx-

imate description of the errors involved in applying the method in 2-D and illustrate this with some

numerical results.
2. Mathematical formulation

The method used here follows that of [3]. We consider first, in detail, the 1-D analogue of the Poisson

equation. There are two reasons for this. The first is that the 2-D Poisson equation (and in principle the 3-D

equation) is treated by applying the 1-D formulation of the boundary conditions separately in each coor-

dinate direction. The second is that for the 1-D problem an exact error analysis can be carried out for both

linear and quadratic treatment of the boundaries, which allows a complete understanding of the rate of con-
vergence and demonstrates why the linear treatment is in general inadequate. Because the 2-D problem is

solved by applying the 1-D method in each coordinate direction separately, the 1-D error analysis can also

be applied (approximately but quantitatively) to the 2-D problem. As we show, the dominant role of the

boundary error when a linear boundary treatment is used turns out to be completely analogous to the

1-D case.

2.1. One-dimensional case

We consider the domain x 2 [a,b] with the 1-D Poisson equation
d2w
dx2

¼ f ðxÞ ð1Þ



Z. Jomaa, C. Macaskill / Journal of Computational Physics 202 (2005) 488–506 491
assumed to hold on the interior interval x 2 [xL,xR]. A uniform grid is taken over [a,b]. Dirichlet boundary

conditions are assumed given at the two boundary points x = xL,xR, which typically are not grid points.

Outside the interior interval we set w = 0, so that in general there is a discontinuity at each of xL and

xR: with zero boundary conditions this will reduce to a jump in slope. Then we label the points between

the jumps so that a = x0 < xL < x1 < x2 < � � � < xN � 2 < xN � 1 < xR < b = xN, with xL � x0 = aLDx and
xN � xR = aRDx.

The discretization of Eq. (1) gives rise to a tridiagonal matrix equation for the unknown w on the interior

grid-points; for the exterior grid-points we set w = 0. At each interior grid-point x = xk, k = 2, . . .,N � 2, (1)

is discretized using the standard centered finite difference approximation:
wkþ1 � wk

Dx

� �
� wk � wk�1

Dx

� �� ��
Dx ¼ fk: ð2Þ
To complete the formulation, we require the discretization of (1) at x = x1 and x = xN � 1, where the second

derivative approximation must be modified to account for the boundary jumps. Consider the left-hand end

x = x1 (the right-hand end treatment is analogous). Here, we can use either a linear or quadratic treatment

to approximate dw/dx at x = x1/2. Fitting a linear polynomial through the values wL = w(xL) and w1 and
evaluating the corresponding slope at x = x1/2 gives the discretization of Eq. (1) at x = x1 as
w2 � w1

Dx
� w1 � wL

ð1� aLÞDx

� ��
Dx ¼ f1: ð3Þ
The fact that only one off-diagonal element of the matrix is modified at each boundary means that it is

straightforward to rewrite the governing system in symmetric form, as has been discussed elsewhere [7].

Alternatively, fitting a quadratic polynomial through the values wL, w1 and w2 and using this to estimate

dw/dx at x = x1/2 gives the discretization of (1) at x = x1 as
w2 � w1

Dx
� 1

Dx
� 2

ð1� aLÞð2� aLÞ
wL þ

1þ aL
1� aL

w1 �
aL

2� aL
w2

� �� ��
Dx ¼ f1: ð4Þ
This appears to be intrinsically non-symmetric.

2.2. Error estimation for the 1-D case

2.2.1. Linear boundary treatment

For the 1-D problem, it is possible to obtain explicit expressions for the error n = w � we, where w is the

numerical solution (a function of the number of grid points and the nature of the discretization) and we is

the exact solution of (1). The approach used here follows that outlined in [9], but not explicitly carried right

through there. We present results for both the linear and quadratic boundary treatments. However, for the

linear case, we find that further analytic approximations can be made, allowing us to identify separately the
errors due to the boundary treatment and the internal discretization.

We define the second derivative operator acting on the required error n as
ðLnÞiþ1 ¼
Hiþ3=2 � Hiþ1=2

Dx
¼ siþ1; ð5Þ
where H is the first derivative of n. The truncation error s is defined as
si ¼ fi � ðLweÞi:

By expanding around x = x1, we find the truncation error at the left-hand boundary is
s1 ¼
1

2
aLw

00
1 �

aL
2

3

4
� aL

2
þ a2L

3

� �
Dxw000

1 þ � 1

12
þ aL

1

8
� aL

8
þ a2L
12

� �� �
ðDxÞ2wð4Þ

1 þOððDxÞ3Þ; ð6Þ
where w0
1 = w 0(x1) and so on.
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Similarly, for the right-hand boundary
sN�1 ¼
1

2
aRw

00
N�1 �

aR
2

3

4
� aR

2
þ a2R

3

� �
Dxw000

N�1 þ � 1

12
þ aR

1

8
� aR

8
þ a2R

12

� �� �
ðDxÞ2wð4Þ

N�1 þOððDxÞ3Þ:

ð7Þ

At internal grid points, we have the simple expression
sk ¼ �ðDxÞ2

12
wð4Þ

k þOððDxÞ4Þ; 26 k6N � 2: ð8Þ
The error n = w � we satisfies the following system of equations:
Ln ¼ s; nL ¼ nR ¼ 0:
Rearranging this system of equations, we obtain:
Hiþ1=2 � Hi�1=2 ¼ siDx; i ¼ 1; . . . ;N � 1: ð9Þ
Hence
Hiþ1=2 ¼ HN�1=2 � Dx
XN�1

k¼iþ1

sk; i ¼ 0; . . . ;N � 2: ð10Þ
From the linear boundary treatment of w0
1=2, used in (3) we find
n1 ¼ ð1� aLÞDxH 1=2 ð11Þ
and hence, on taking the sum of the N � 1 equations in (9) we find
n1 ¼ ð1� aLÞðDxÞ2
HN�1=2

Dx
�
XN�1

k¼1

sk

" #
: ð12Þ
The remaining error terms can be determined using the recurrence
nk � nk�1 ¼ DxHk�1=2; k ¼ 2; . . . ;N � 1: ð13Þ
The sum of the N � 2 equations in (13) gives
nk ¼ n1 þ Dx
Xk�1

m¼1

Hmþ1=2 ð14Þ
and then use of (9) gives
nk ¼ ðDxÞ2 ðk � aLÞ
HN�1=2

Dx
� ð1� aLÞ

XN�1

k¼1

sk �
Xk�1

m¼1

XN�1

j¼mþ1

sj

" #
: ð15Þ
Finally, using (15) with k = N � 1 and the linear approximation for w 0
N � 1 gives
HN�1=2 ¼
Dx

N � aL � aR

XN�1

j¼1

ðj� aLÞsj ð16Þ
and hence we have a closed form for the errors nk in terms of the truncation errors si.
The double summation in (15) is unwieldy and can be replaced by the following simpler form:
nk ¼ ðDxÞ2 k � aL
N � aL � aR

� 1

� �XN�1

j¼1

ðj� aLÞsj �
XN�1

j¼kþ1

ðk � jÞsj

" #
: ð17Þ
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Here the total error at the end-points n1 and nN � 1 is O((Dx)2). For 2 6 k 6 N � 2 the error at internal

grid-points, nk is also O((Dx)2), so that we have apparently uniform error. (Note that a sum like
P

jsj is
O(1), corresponding to N2 terms of O((Dx)2).) In practice the end-point error dominates, since the coeffi-

cients for n1 and nN � 1 are usually numerically significantly greater than the coefficients of error at the

internal points. We investigate this in more detail in the next sub-section.

2.2.2. Analysis of the linear error expressions

We show in this section that simplified expressions can be obtained for the end-point error when the lin-

ear boundary treatment as in (3) is used. In addition, an integral approximation can be found for the inter-

nal error.

For convenience, we consider the special case where the right-hand boundary coincides with a grid-

point, i.e., aR = 0, so that the dominant boundary error comes from the left-hand end. In this case, we have

from (6)
s1 ¼
aL
2
w00

1 þOðDxÞ ð18Þ
and
si ¼ �ðDxÞ2

12
wð4Þ

i ; i ¼ 2; . . . ;N � 1: ð19Þ
Hence
nk ¼ ðDxÞ2 1

1� aL=N

� �
k
N
� 1

� �XN�1

j¼1

ðj� aLÞsj �
XN�1

j¼kþ1

ðk � jÞsj

" #
: ð20Þ
To identify the error due to the jump at the left-hand end-point, we compare Eq. (20) (where aL 6¼ 0) with

the following simplified form with aL = 0:
nkð0Þ ¼ ðDxÞ2 k
N
� 1

� �XN�1

j¼1

jsj �
XN�1

j¼kþ1

ðk � jÞsj

" #
: ð21Þ
Taking the difference between Eqs. (20) and (21), and retaining only the highest order terms, gives the fol-

lowing approximation for the left-hand end-point contribution to the error:
nk � nkð0Þ ¼
k
N
� 1

� �
ð1� aLÞs1ðDxÞ2 ¼

ðk � NÞaLð1� aLÞ
2N

w00
1ðDxÞ

2
: ð22Þ
Taking the derivative of Eq. (22) with respect to aL shows that the maximum end-point error occurs when

aL = 0.5, which is not surprising. Furthermore, the end-point contribution vanishes when the jump coin-

cides with a grid-point, i.e., when aL = 0,1. In addition, the expression (22) is linear in x, with absolute max-

imum occurring at the left-hand end, and diminishing to zero at the right-hand end.

One can derive a similar expression for the error at the right-hand end:
nk � nkð0Þ ¼ � k
N
ð1� aRÞsN�1ðDxÞ2 ¼ � kaRð1� aRÞ

2N
w00

N�1ðDxÞ
2
: ð23Þ
There does not seem to be any simple way to carry out an analogous calculation for quadratic treatment of

the boundaries, because the end-point error is no longer dominant and hence does not appear at leading

order.

From Eqs. (22) and (23), since the maximum end-point error occurs when a = 0.5, we can give an

approximate upper bound for the magnitude of the end-point error:
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nmax
end ¼ 1

2
maxðj w00ðxLÞ j; j w00ðxRÞ jÞðDxÞ2: ð24Þ
We can also obtain a simpler approximation for the error in the absence of end-point jumps in Eq. (21).

This is obtained by interpreting the summations appearing in (21) as Riemann sums and then replacing

them with integrals:
nkð0Þ ¼
1

3N 2

Z xk

xL

xwð4ÞðxÞdx� xk � xL
xR � xL

Z xR

xL

xwð4ÞðxÞdxþ xL
xk � xL
xR � xL

Z xR

xL

wð4ÞðxÞdx
�

�xL

Z xk

xL

wð4ÞðxÞdxþ ðxk � xLÞ
Z xR

xk

wð4ÞðxÞdx
�
: ð25Þ
This expression, which represents the total error in the absence of boundary jumps, can also be viewed as a

close approximation to the total error obtained even in the presence of boundary jumps when a quadratic

boundary fit is employed, because in that case the boundary error is O((Dx)3) and makes a negligible

contribution.

An example makes it clear how (24) and (25) can be used. If �xL = xR = b and w = emx for some integer

m, then
nkð0Þ ¼
m2

6bN 2
ðxk þ bÞemb þ ðb� xkÞe�mb � 2bemxk
� 	

: ð26Þ
The maximum value of this expression occurs near xk = 0 (more precisely, at x = log(sinhmb/mb)/m).
Therefore, the ratio defined by
r ¼ nmax
end

nmax
k ð0Þ










 ð27Þ
takes the form
r ¼ 3
emb

emb þ e�mb � 2b










 ð28Þ
for this case (if we assume xk = 0). The expression (28) gives a ratio of maximum end-point error to max-
imum internal error that is relatively large, e.g., r � 7.5 when m = 1 and b = 1, r � 3.9 when m = 1 and

b = 0.5. Other forms for w give less dramatic results, so that for example w = cosx with b = 1 gives

r � 1.8 and w = sin3x with b = 0.7 gives r � 2.9. (Clearly, with sinusoidal solutions w it is possible to choose

examples such that expression (24) for the end-point error is identically zero.)

2.3. Quadratic boundary treatment

The analysis leading to the form (17) for the errors arising from a linear boundary treatment can be re-
peated for the quadratic boundary fitting described in Eq. (4). We merely quote the results here.

The truncation errors are:
s1 ¼ �Dx
3
aLw

000
1 � ðDxÞ2

12
ð1� 2aLÞwð4Þ

1 ; ð29Þ

sN�1 ¼
Dx
3
aRw

000
N�1 �

ðDxÞ2

12
ð1� 2aRÞwð4Þ

N�1 ð30Þ
and
sk ¼ �ðDxÞ2

12
wð4Þ

k ; 26 k6N � 2: ð31Þ
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Following the approach outlined above for the linear boundary treatment, we obtain:
Table

The or

treatm

(a) No

si = O(

Ln = s
n1 = O

nN � 1

ni ¼ O

i ¼ 2; .
nk ¼ ðDxÞ2 ½ðk � aLÞ
HN�1=2

Dx
� 1

2
ð1� aLÞð2� aLÞs1 þ

XN�1

j¼1

ðaL � jÞsj �
XN�1

j¼kþ1

ðk � jÞsj

" #
; ð32Þ
where " #

HN�1=2 ¼ Dx ðaL � 1Þð2� aLÞs1 þ 2ð1� N þ aLÞ þ aRðaR � 1Þ½ �sN�1 þ 2

XN�2

j¼2

ðaL � jÞsj

� 2N � 2aR � 2aL½ ��1
: ð33Þ
Here, HN � 1/2 is O((Dx)2), so that the total error at the end-points n1 and nN � 1 is O((Dx)3). However, for
2 6 k 6 N � 2 the error at internal grid-points nk is O((Dx)2). These orders are the same as those found in

[9], who used a slightly different quadratic boundary treatment, but as our numerical results will show, the

present method actually gives end-point errors with smaller coefficients, so that even for moderate N the

internal error dominates, and the convergence is uniformly O((Dx)2).

2.4. Overview of the 1-D error analysis

In Table 1, we give an overview of the above analysis. Column (a) of the table refers to the standard
problem, where the boundaries coincide with grid points, column (b) is the embedded boundary problem,

with a linear treatment at the boundaries and (c) is the embedded boundary problem with quadratic treat-

ment of the boundaries. Internal truncations errors si are O((Dx)2) in each case. However, the boundary

truncation errors s1 and sN�1 move from O(1) for the linear boundary treatment to O(Dx) for the quadratic
boundary treatment and finally O((Dx)2) when there are no boundary jumps. Inversion of the Poisson equa-

tion corresponds to integrating the truncation error twice, so that the boundary errors n1 and nN�1 then

range from O((Dx)2) for the linear boundary treatment through to O((Dx)4) for the no-jump problem.

By contrast internal errors in all three cases are O((Dx)2), because of the double summation (i.e. approxi-
mately N2 terms) each of O((Dx)4). Therefore, the linear boundary treatment gives rise to boundary errors

that are of the same order as the internal error, but the large coefficients of these errors in most cases means

that it is necessary to move to the quadratic treatment at the boundaries.

2.5. Two-dimensional case

Consider the two-dimensional Poisson equation
r2w ¼ f ðx; yÞ; ð34Þ
1

der of the error for the three 1-D cases: (a) no boundary jumps; (b) linear treatment of boundary jumps and (c) quadratic

ent of boundary jumps

jumps (b) Linear (c) Quadratic

(Dx)2), i = 1,. . .,N � 1 s1 = O(1) s1 = O(Dx)
sN � 1 = O(1) sN � 1 = O(Dx)
si = O((Dx) 2), i = 2,. . .,N � 2 si = O((Dx)2), i = 2, . . .,N � 2

Ln = s Ln = s
((Dx)2) s1 = O((Dx)4) n1 = O((Dx)2) s1 = O((Dx)2) n1 = O((Dx)2) s1 = O((Dx)3)
= O((Dx)4) nN � 1 = O((Dx)2) nN � 1 = O((Dx)3)
ððDxÞ2Þ

PP
si ¼ OððDxÞ2Þ;

. . ;N � 2

ni ¼ OððDxÞ2Þ
PP

si ¼ OððDxÞ2Þ;
i ¼ 2; . . . ;N � 2

ni ¼ OððDxÞ2Þ
PP

si ¼ OððDxÞ2Þ;
i ¼ 2; . . . ;N � 2
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and let X be any irregular 2-D shape inscribed within a rectangle with boundary oX at which Dirichlet con-

ditions w(x,y) = g(x,y) are specified. As w = 0 outside the physical domain, there may be jumps on oX. We

denote by xi + 1/2,j the midpoint of the interval [xi,j,xi + 1,j] (i.e., in the x-direction) and by yi,j + 1/2 the mid-

point of the interval [yi,j,yi,j + 1]. The generalization of the numerical approach to the 2-D case is simple to

implement since it involves a dimension by dimension application of the 1-D method. For all the interior
points where there are no jumps in x, we use centered differences to approximate ow/ox at the midpoint:
−

−

−

−

(

Fig. 1

bound

enlarg
w0
iþ1=2;j ¼

wiþ1;j � wi;j

Dx
; ð35Þ
with a similar approach for ow/oy at internal points. For any points where there is a jump in x to be incor-

porated in the discretization, we approximate ow/ox at x = xi + 1/2,j by fitting a linear polynomial through
the values wI,j and wi + 1,j, and then evaluating its slope at x = xi + 1/2,j. Similarly, for any points where there

is a jump in y, we need to approximate ow/oy at y = yi,j + 1/2 by fitting a linear polynomial through the val-

ues wi,J and wi,j + 1, and evaluate its slope at y = yi,j + 1/2. This gives rise to a pentadiagonal stencil for the

matrix representing the discrete operator, and with elementary modifications this can be made symmetric.

A similar approach is used for the quadratic boundary treatment, again dealing separately with x and y

derivatives. However, for any points where there is a jump in x to be incorporated in the discretization, we

approximate ow/ox at x = xi + 1/2,j by fitting a quadratic polynomial through the values wI,j, wi + 1,j and

wi + 2,j, and then evaluating its slope at x = xi + 1/2,j. A similar treatment is used in the y-direction. Again,
this gives rise to a pentadiagonal stencil for the matrix representing the discrete operator, but it is not pos-

sible to make this matrix symmetric. Either of the two boundary treatments naturally gives rise to three

kinds of boundary points, those where a boundary treatment is needed for both x- and y-directions (corner

points) and those where boundary treatment is only required for the x- or y-directions separately. All three

kinds of points are shown for a circular domain embedded in a square box in Fig. 1. For example, the open

square in Fig. 1(b) at x � 0.55 is a corner point, giving a boundary contribution to both the x-wise discre-

tization at y � �0.8 and the y-wise discretization at x � 0.55. The adjacent open circle at x � 0.61 gives a
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boundary contribution in the y-direction, but not in the x-direction, and the next open circle at x � 0.73

gives a boundary contribution only in the x-direction.
3. Numerical results

In this section, we give results for a selection of 1-D problems that show that the error expressions for the

linear boundary treatment (Eq. (17) and the approximate forms (24) and (25)) and the quadratic boundary

form (32) compare well with direct numerical calculations.

We then go on to show that the 1-D boundary expressions can be used to predict the error for 2-D prob-

lems, for boundary points that are not corner points. As the boundary error dominates for the linear treat-

ment, this gives us a useful prediction for the maximum error in the 2-D case. By contrast, the boundary

error when the quadratic boundary treatment is employed still shows agreement with the 1-D analytical
expressions. In this case, the maximum error will occur internally, but is essentially equivalent to the error

expected in the absence of boundary jumps for which we have no analytical expression.

3.1. 1-D cases

Fig. 2(a) shows the errors involved in using the 1-D linear boundary treatment of (3) for a symmetric

problem, where w = cosx. The domain of interest is embedded in the region x 2 [�1,1] with w = 0 for

|x| > 0.7. Dirichlet conditions are applied at x = ±(0.7�0.3p/N) where there are N intervals of length 2/
N. Thus we are really solving a sequence of different problems, with the boundary condition dependent

on N. This is done to ensure firstly that aL and aR are constant for all N so that convergence depends only

on N: our earlier analysis shows strong dependence of the error on the magnitudes of aL and aR. (In fact

here aL = aR = 0.471, which corresponds to almost the maximum error case aL = aR = 1/2.) The second aim

is to guarantee that we have a test problem of relevance to the 2-D case, where the boundary conditions will

not in general coincide with grid-points. (A possible alternative approach is to take N � 1 intervals and

fixed boundaries at x = ±0.7. This would satisfy the requirement that the boundaries not coincide with

grid-points, but then aL and aR would vary with N.) We see almost exact agreement with the error expres-
sion (17). Similar good agreement between the quadratic boundary treatment of (4) and the full error

expression (32) is shown in Fig. 2(b). Fig. 2(c) shows the rms and maximum absolute errors for the two

cases: as would be expected from the form of the error in (a), the end-point error dominates the rms error

as well as the maximum error, with the quadratic convergence clearly shown in all cases. (Results are shown

for N = 40, 80, 160 and 320 and plotted as a function of log10(N).) Finally in Fig. 2(d), we see that the sum

of approximate forms for the end-point errors (22) and (23) gives a very useful estimate for the dominant

error, and that once the internal error expression (25) is added the approximate form is essentially identical

to the full error expression. Fig. 3 is similar to Fig. 2, but for the case with analytical solution w = ex, which
is no longer symmetric about x = 0. We find qualitatively similar results, with the linear boundary treat-

ment, dominated by the error at the boundaries, giving rise to somewhat larger errors overall than in

the case of Fig. 2. The final 1-D example of Fig. 4 has w = sin3x. Here there is some cancellation between

the left- and right-hand errors, so that the ratio of linear to quadratic error is significantly less than in the

two previous cases, with ratio r � 3 for both rms and maximum absolute errors.

3.2. 2-D cases

We now discuss the application of the method to 2-D problems. In Fig. 5 we consider the problem of

inverting the Poisson equation $2w = �2cos(x + y) on the unit circle, with Dirichlet boundary conditions

chosen to ensure continuity from within, i.e., w = cos(x + y). Outside the unit circle we set w = 0. The
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Fig. 2. The error in solving the 1-D problem d2w/dx2 = �cosx, with boundary conditions w = cos[±(0.7 � 0.3p/N)] for

x = ±(0.7 � 0.3p/N), respectively, and with w = 0 elsewhere. In (a) the numerical results for N = 100 are shown with a solid curve

for the linear boundary treatment of (3), compared with the full analytic error expression (17), shown as open circles. In (b) the

quadratic boundary treatment (4) with N = 100 (solid curve) is compared with the quadratic error expression (32) (open circles). Panel

(c) compares the rms error (solid lines) and maximum absolute error (dash-dotted lines) for the two cases. Finally, in panel (d) we

compare the numerical error for the linear case of (a) with the sum of the end-point errors calculated using (22) and (23) (dash-dotted

curve). Also shown (as open circles) is the sum of the end-point errors (22) and (23) and the integral form for the internal error (25).
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domain is embedded in a square of side length 2.4. The first panel (a) shows a contour plot of the solution

w, with the discontinuity at the boundary clearly apparent and using N = 40, where N is the number of grid-

intervals in each coordinate direction. Panel (b) shows the rms and maximum errors as a function of log10N

for N = 20, 40, 80 and 160. All errors scale with N�2, as for the 1-D case, with the quadratic boundary treat-

ment reducing the rms error by a factor of about 3.4. In panels (c) and (d), we show the boundary error for

the linear and quadratic boundary treatments, respectively (again with N = 40, so that there are 96 bound-

ary points just inside the circle, as marked with open circles and squares in Fig. 1). As we only have avail-

able the 1-D error expressions, we can only make comparisons at points on the boundary which essentially
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use a 1-D treatment, i.e., boundary points which are not corner points (see Fig. 1). Although the agreement

is not exact, we see quite reasonable estimation of the error at the boundaries, with the boundary error for

the quadratic treatment 35 times smaller than for the linear treatment. The numerical errors for the whole

domain are plotted in Fig. 6 (panels (a) and (c) for the linear treatment, and (b) and (d) for the quadratic

treatment). As in the 1-D problems, when the linear treatment is used the maximum error occurs at the

boundaries. Therefore our 1-D estimation of boundary error gives a reasonable bound for the error over

the whole domain in this case. By contrast, the quadratic error is dominated by the internal error (as would

be found in the absence of boundary jumps) and the boundary contribution is negligible. This confirms the
superiority of the quadratic boundary treatment. A more complicated domain and form for w are consid-

ered in Figs. 7 and 8, with similar features apparent. In fact in this case, the linear boundary error is even

larger by comparison with the quadratic boundary error (note that in Fig. 8(d) the errors have been mul-

tiplied by a factor of 10.)



1 0.5 0 0.5 1
5

0

5
x 10

−4

x

E
rr

or

Numerical
Theoretical

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4

x
E

rr
or

Numerical
Theoretical

1.5 2 2.5 3
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

log
10

(N)

lo
g 10

(E
rr

or
)

}

Quadratic

Linear

N–2

rms error 
max error 

}

−1 −0.5 0 0.5 1
−5

0

5
x 10

−4

x

E
rr

or

Numerical
Endpoints (22)+(23)
Internal (25)+endpoints

(a) (b)

(d)(c)

Fig. 4. As for Fig. 2 but with the 1-D problem d2w/dx2 = �9sin3x, with boundary conditions w = sin[±3(0.7 � 0.3p/N)] for

x = ±(0.7 � 0.3p/N), respectively.

500 Z. Jomaa, C. Macaskill / Journal of Computational Physics 202 (2005) 488–506
The method of [9] also uses a quadratic treatment at the boundaries, but does not treat the x- and y-di-

rections separately, but rather uses an area fit for the boundary partial cells. They show that this leads to

O((Dx)3) error from the boundaries, with O((Dx)2) internal error dominating for large N, as is the case with

the present method. In Fig. 9, we make comparison with a case treated in [9]. They consider a six-leaf do-
main, similar to the four-leaf domain of Fig. 7, described by r 6 0.30 + 0.15cos6h with $2w = 7r2cos3h on

the interior of the domain and non-zero Dirichlet boundary conditions chosen to ensure continuity with the

interior solution, i.e., w(r,h)=r4cos3h. Using data from their Table 2 and their Fig. 9, for the one-norm de-

fined as the mean absolute error, shows that the coefficient of error from the boundary terms is smaller with

the Shortley–Weller approach, so that O((Dx)2 behaviour holds even for moderate N. For large N, both

methods appear to have the same order of error, but the method used here appears slightly more efficient.

We expect this behaviour to hold in general, as it is consistent with all our other 2-D cases.
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Note that in all the above calculations, the corresponding matrix problems have been solved by direct

inversion. In application of these ideas in ongoing work on vortex dynamics on an irregular 2-D domain

using the CASL technique (i.e., extensions of the circular cylinder case of [12]) we store the LU decompo-

sition of the matrix at the beginning of the calculation. Extension to the full quasi-geostrophic (layerwise 2-

D) case will require storage of the corresponding decomposition for each vertical mode. For very large
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problems, storage limitations may require a shift to an iterative solution of each matrix problem at each

time-step, but this will have a significant time penalty.
4. Conclusion

In this paper, we have discussed the embedding method for the solution of the Poisson equation, using

both a linear and a quadratic boundary treatment following [3,21], respectively. For the 1-D case, we have
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determined explicit forms for the error involved, following the ideas of [9]. Furthermore, for the linear

boundary treatment we have derived simple approximate expressions that show how the dominant error

is related to the end-point truncation error. These expressions show that for the linear case the boundary

error is O((Dx)2) in agreement with [3,7] and so is of the same order as the internal error that is present even
in the absence of boundary jumps. However, the coefficient of error is very large for the boundary contri-

bution and so usually dominates. Similarly, in agreement with [21,9] we find that the end-point error is

O((Dx)3) for the quadratic boundary treatment and so has negligible influence, with the total error being

dominated by the internal error.
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Although no expressions of error have been derived for the 2-D case, we have found that for boundary

points that are not corner points, the 1-D error expressions, in either the x- or y-directions as appropriate,

give good estimates for the 2-D boundary error in both linear and quadratic cases. As the boundary error

dominates for the linear boundary treatment, this means that we have useful bounds for the total error in

this case (and indeed we expect this to generalise to 3-D, although no calculations have been performed). By

contrast for the quadratic case we find that the boundary error is negligible.
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Thus in summary we have shown that the 1-D error treatment gives significant information about the 2-

D Poisson solution method, particularly for the linear boundary treatment. In particular, we have demon-

strated that if a non-symmetric matrix formulation can be accepted, then the quadratic boundary treatment
should always be employed. We believe this conclusion will also apply to the 3-D problem, as the boundary

treatment is carried out dimension by dimension.

We note that because the expressions for end-point error (22) and (23) take such a simple form in 1-D it

is possible to correct for this error explicitly in the matrix formulation. If this is done, the quadratic bound-

ary treatment is exactly recovered, with the attendant loss of symmetry.
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